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Abstract 

Information on the triplet phase sum @~ of the struc- 
ture factor product F(-h)F(h-g)F(g) can be 
deduced from the rocking curve of a 0-scan experi- 
ment scanning through a three-beam position. For 
non-centrosymmetric structures, four typical profiles 
can be observed. For @:~ = 0, 180 °, asymmetric profiles 
result, whereas a nearly symmetrical decrease or 
increase of the two-beam intensity appears for @:~ = 
+90 °. In a first approximation this behaviour can be 
explained by the interference between the directly 
diffracted wave of b and the 'Renninger Umweg' wave 
ofg and h - g .  Their phase relationship and the ampli- 
tudes are governed by a spatial resonance term, which 
causes a phase shift of 180 ° and a continuously turning 
on and off of the Umweg wave amplitude scanning 
through the three-beam position. This interference 
can be displayed by a phase-vector diagram which 
outlines the main features of the ~-scan profiles. The 
semi-quantitative results are confirmed by calculation 
based on the dynamical theory. The distinction 
between @~ = +90 ° allows the experimental determi- 
nation of enantiomorphs. 

1. Introduction 

It has been suggested for a long time that multiple- 
beam X-ray diffraction can be applied to determine 
the phase relationship of the waves involved. In a 
three-beam diffraction case three reciprocal-lattice 
points (r.I.p.) O, H, G simultaneously lie on or close 
to the Ewald sphere. Then, three strong wave fields 
are propagated in the crystal owing to the reciprocal- 
lattice vectors (r.l.v.) O, h, g with the propagating 
vectors K ( n ) = K ( O ) + n ,  n = O ,  h, g, according to 
Bragg's law. From a more or less kinematical point 
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of view, the amplitude of the total wave field propa- 
gated in the direction K(h) results from the interfer- 
ence between the 'direct' wave diffracted at the lattice 
plane (h) and the detour excited wave ('Renninger 
Umweg' wave) diffracted at the lattice planes (g) and 
(h -g ) .  This depends on the phase difference and on 
the amplitudes of both waves given by their structure 
factors F(h),  F(g) and F ( h - g ) ,  respectively. There- 
fore, the diffracted intensity in the three-beam case 
bears information on the phase difference (Lipscomb, 
1949): 

@~ = [ ~(g) + ~ ( h -  g)] - ~(h) 

= ~p ( -h )  + ~p(g) + ~ ( h - g ) ,  

which represents a structure-invariant triplet phase 
relationship. The influence of this interference on the 
two-beam intensity can be measured by a ~-scan 
experiment monitoring the integrated intensity I(h) 
while the crystal is rotated about the direction h and 
scanned through a three-beam position. The resultant 
gt-scan profiles must depend on the triplet phase @;~. 
They can be explained by the continuously turning 
on and off of the amplitude of the Umweg wave and 
an additional phase shift a (qt) by 180°.when the r.l.p. 
G passes through the Ewald sphere (Hiimmer & Billy, 
1982).* If it is borne in mind that Bragg diffraction 
is a spatial resonance phenomenon (Ewald, 1917), 
the behaviour of the Umweg wave is nothing but the 
behaviour of every resonance phenomenon passing 
;through the resonance. 

c. 

* In the cited paper there is an error, k~ < 0 and xF > 0 correctly 
mean that the third r.I.p. G lies inside or outside the Ewald sphere 
respectively, i.e. all the gt-scan profiles drawn in the paper refer 
to an in-out rotation sense. 
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128 ENANTIOMORPHS OF NON-CENTROSYMMETRIC STRUCTURES. I. 

Starting from simplified fundamental equations of 
the dynamical theory of X-ray diffraction and apply- 
ing a perturbational approach, we derive in this paper 
expressions for the amplitude and the intensity of the 
wave fields which proves the validity of our interpreta- 
tion. The results can be outlined by a simple phase- 
vector diagram describing the interference between 
the directly diffracted and the Umweg wave. The 
phase-vector diagram immediately displays the gen- 
eral features of the U-scan rocking curves for different 
triplet phases Oz even in the case of non-centro- 
symmetric crystal structures. 

The experimental determination of structure- 
invariant triplet phases also allows the fixing of the 
absolute configuration because the triplet phases of 
enantiomorphs differ in their signs and the qt-scan 
profiles for Oz--±90 ° are clearly distinguishable. 

2. Spatial resonance 

In order to calculate the amplitudes of the X-ray wave 
fields in an ideal crystal, one has to solve Maxwell's 
equations in a medium with a periodic complex 
dielectric susceptibility X. This leads to the wave 
equation for the vector D of dielectric displacement 

d2D/dr2+4zr2k2D = -cur l  curl P (1) 

4¢rP= x(r)D; Iko] = Ao ~, 

which may be solved by the following relationships 
taking account of all the waves consistent with Bragg's 
law: 

K(b) = K(O) +h ,  (2) 

P=exp(2~ivt) ~ P(h) exp [-2~-iK(h).  r] (3) 
h 

D=exp(21rivt) ~ D(h) exp [-2~-iK(h).  r] (4) 
h 

x(r)=Zx(h)exp(-2~rivh.r);x(h)=-FF(h). (5) 
h 

P is the vector of dielectric polarization, ko and K(h) 
are the wave vectors in the vacuum and inside the 
crystal, v is the X-ray frequency, F = reA2/~Vez (re: 
classical electron radius; VEZ: volume of the elemen- 
tary cell) is a small number of the order of 1 0  - 7  and 
F(h) is the structure factor. 

The solutions of (1) are the fundamental equations 
of the dynamical theory: 

D(h)=-{K(h)2/[K(h) 2- K2]}F ~ F ( b - g ) D h ( g ) ;  
g # h  

K = k o [ 1 - ½ F F ( O ) ] .  (6) 

Dh(g) is the projection of D(g) on D(h); IKI is the 
radius of the Ewald sphere about the Lorentz point 
and it represents the wave vector in the one-beam 
case, i.e. only the r.l.p. O lies on the sphere. 

In his work on crystal optics of X-rays Ewald (1965) 
pointed out that the dipole wave given by P travelling 
through the lattice is the 'driving force' for the dis- 
placement field strength D(b) of a certain wave vector 
K(h). The resonance term [ K ( h 2 ) - K 2 ]  -1 may be 
regarded as the efficiency of the crystal for converting 
a given amplitude of polarization P into the field 
amplitude D(b). If Bragg's diffraction condition 
K2(h) = K 2 is fulfilled this efficiency will be optimum. 
The amplitudes D(h) of waves, the corresponding 
r.l.p.'s of which lie respectively outside [K(h)2 > K 2] 
or inside [K(h)2<  K 2] the Ewald sphere, undergo a 
change of their signs when crossing the sphere, i.e. 
there is a phase shift of 180 ° going through the reson- 
ance K2(h) = K 2 (Ewald, 1917) and the amplitude is 
turned on and off continuously. Thus, Bragg diffrac- 
tion is a spatial resonance phenomenon, the 
diffraction is optimum when the spatial periodicity 
of the incoming wave matches the spatial periodicity 
of the lattice planes. 

3. Interference near a three-beam setting 

In the following, we calculate the amplitude of the 
wave fields near a three-beam case by a perturbational 
approach, which is common in electron diffraction 
dynamical theory and is often referred to as 'Bethe 
potentials' (Bethe, 1928). In their papers, Juretschke 
(1982a, b, 1984) and H0ier & Marthinsen (1983) also 
used this formalism. 

For simplicity we neglect the coupling terms due 
to different directions of polarization of the wave 
fields in the fundamental equations for a three-beam 
case and so we are left with the following system of 
equations for one direction of polarization only 
(Laue, 1960): 

" g ( o )  2 _ g 2 
a ° F ( - h )  

K(O)  2 

K (h) 2 - K 2 
~°F(h) 

K(h) 2 

a °F (g )  aghF(g-h)  

a°gF(-g)  

aghF(h-g)  

K (g)2 _ K -~ 

K(g) 2 I 
' °  

o. (7) 

D(g)  = -{  K (g)2/[ K (g)2_ K 2]} 

h x[a°gF(g)D(O)+ cegF(g-h)D(h)]. (8) 

Upon insertion of (8) in (7) the three-beam case can 
be reduced to give a modified two-beam case with an 
effective structure factor F~f~. 

[.o 1 + R ( g ) a ° 2 F 2 ( g )  F : .  [ D(O) ]  

Fe~ - R ( h )  -1 LD(h ) j =0 ,  (9)  
+ R ( g ) a ~ 2 F 2 ( h  - g) 

a are geometrical coupling factors Umes 1". 
D(g) may then be expressed in terms of the ampli- 

tudes of the wave fields D(O)  and D(b) by the third 
line of (7): 



K. HOMMER AND H. BILLY 129 

where we use the following abbreviations: 

R(n)={K(n)2/[K2-K(n)2]}; n = O , g , h  

F e ~ = a ° F ( + h ) +  R(g)cr°o~hF(+g)F(+h~g). (10) 

Then, the ratio D(h)/D(O) is given by 

O(h) /D(O)  = R(h)F+n/N 

=[R(h)/N][D2(h)+D,(h,g)] (11) 

with 

DE(h) = ot°F(h); D,(h, g) = R(g)ot°ahF(g)F(h-g); 
N= 1-  a h2F2(h-g) g(g) g(h). 

This result confirms the basic idea of Lipscomb 
(1949). The amplitude of the wave field propagated 
in the K(h) direction is given by the superposition of 
the direct wave D2(h) (the index 2 indicates the two- 
beam amplitude) and the Umweg wave D, (h, g). The 
phase difference of the waves is a triplet phase 
relationship. This can be clearly seen by rewriting 
(11): 

D(h) /D(O)  = [R(h)/N]F(h)cr°{1 +[A/F2(h)] 

x R(g)F(-h)F(g)F(h-g)} (12) 

with 
A =  o h 0 Ol g Ol g / Ol h. 

The resonance term R(g) governs the amplitude and 
the resonance phase shift of the Umweg wave. If the 
r.l.p. G is inside the Ewald sphere then K(g) < K 
and R(g)>  0. If it is outside then K(g) > [K  and 
R(g)<0.  That means that the amplitude of the 
Umweg wave changes its sign, i.e. there is a resonance 
phase shift za (~F) of 180 ° depending on the scanning 
angle gt in addition to the constant triplet phase. 
Therefore, the total phase difference ~ ( ~ )  between 
the direct wave and the Umweg wave depends on 
and is given by 

~(aF) = q°:z + A ('t/t). (13) 

The amplitude /9. is highest near the three-beam 
position for JK(g)I=IKI . By scanning through the 
three-beam resonance the amplitude of the Umweg 
wave is turned on and off continuously. 

In a first-order approximation the interference 
between the direct and the Umweg wave can now be 
outlined by a simple phase-vector diagram. 'First- 
order approximation' means that the denominator N 
may be taken as a constant (N- -  1). It is equivalent 
to the range of validity for the first-order solution 
given by Juretschke (1984). In this range the main 
effect of the three-beam coupling is described by the 
effective structure factor Fe~ which contains the 
phase-dependent terms. The range of validity for the 
first-order solution depends on the moduli of the 
structure factors involved in the three-beam case 

[Juretschke (1984), where EL is equivalent to 1/R(g) 
in this work]. 

For the behaviour of the amplitude of the Umweg 
wave the resonance term R(g) plays the important 
role. R(g) is complex, bearing in mind that because 
of the absorption the wave vectors must be taken as 
complex numbers. 

R (g) = [ K'(g) - iK"(g) ]2/{ (K,_ iK") 2 

-[K'(g)-iK"(g)] 2} 

= K'(g)2/[K'2-K'(g)2+ iff£ 2] (14) 

with 
^2 K = 2K 'K ' (g ) [K 'K" (g ) -  K'(g)K"]/K'(g) 2. 

This is a Lorentzian-type function where we have 
neglected the quadratic terms of the imaginary parts 
which are some orders of magnitude smaller than the 
real parts. The decomposition into the modulus 
Rg(~) and the phase A(gt) leads to 

R(g)=Rg(~)exp[iA(vF)]. (15) 

Fig. 1 (a) shows typical resonance curves for both the 
amplitude Rg(~)  and the phase zl (gt). In the complex 
plane the terminal of the vector representing R(g) 
traces out a circle by scanning gt through the three- 
beam position. So does the vector representing 
D,(h,g) (cf. Fig. lb). 

The phase-vector diagram for the interference of 
the direct wave D2(h) and the Umweg wave/9,  (h, g) 

ampli tude Rg(Lp) 
(arb. units) 

10 

5 

0 

3 

1.0 

in ~ 0 ~ out 

phase A(y) 

(deg) O 1 :y-- 
9O 

1.0 K(g_I/K 

in ---* o - - *  out ~u 
(a) 

ira. axis 

5 

3 

I real ax is  

phase-vec to r  d iagram 
(b) 

Fig. l. Schematic drawing of the behaviour of the U m w e g  wave; 
(a) amplitude and phase versus  scanning angle ~; (b).the 
corresponding phase-vector diagram. 
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in a ~-scan experiment can now be constructed (Fig. 
2). The real axis defines the reference angle zero for 
the Umweg wave, because only the phase difference 
of D2(h) and Du(h,g) is important and so we 
arbitrarily assign to D2(h) a phase of zero; i.e. DE(h ) 
is given by a constant vector on the real axis. Then, 
the vector Du(h, g), tracing out a circle, is added. By 
rotation of its circle with respect to the real axis the 
constant triplet phase qbz is taken into account. The 
sum of these vectors gives the resultant wave ampli- 
tude D(h) for the three-beam interference. The 
dashed circle about the origin with radius D2(h) is a 
subsidiary line. If the vector terminal of D(h) lies 
outside then the resultant amplitude is larger, if it is 
inside, D(h) is smaller than the amplitude DE(h ) 
established by the two-beam diffraction, i.e. the three- 
beam intensity is increased or decreased with respect 
to the two-beam intensity l(2)(h). The general features 
of the ~-scan profiles for different triplet phases qbz 
can immediately be deduced from this phase-vector 
diagram. 

The fundamental characteristics of the ~-scan 
profiles can also be easily calculated by means of (11) 
except for a range very close to the three-beam setting. 
But for [~1 > 2" N - 1  and therefore the following 
relations hold: 

& ( ~ ) - . -  

&(, / ,)- .- .  

D(h) z= D(h) D*(h) 

[ a ° F ( h ) + R g ( ~ )  

x exp iA(~)a°aghF(g )F (h -g ) ]  

/~ ( , / , )  .--. 

x complex conjugate 

a °2 F(h) 2 + R2(1/,r) ~0g2~ g h2 F(g) 2 F ( h -  g) 2 

+ 2CRg(gr) cos [ ~z + A( gr)] (16) 

with 

C 0 0 h --~h~c~ F(-h)IF(g)IF(h-g). 
Equation (16) also shows clearly the interference 
between the direct wave and the Umweg wave. It 
should be stressed that the interference term, the third 
term of (16), contains not only the triplet phase qbz 
but the interference is governed by the total phase 

oO,-'- Y 
>, \ 

D2{h) ~ reol oxis 
/ !  

Fig. 2. Phase-vector diagram of the interference between the direct 
diffracted wave D2(h) and the Umweg wave Du(h, g). 

difference q ) ~ + A ( ~ )  [see (13)]. Since the intensity 
does not simply depend on cos q~, different ~-scan 
profiles must result for q)~ = ±90 °. This difference 
cannot be deduced from the dispersion surfaces 
because they depend only on cos q~ (Ewald & H6no, 
1968). 

4. qs-scan profiles for non-centrosymmetric structures 

In the following it will be shown that the general 
features of the typical q/-scan profiles for triplet 
phases ~z = 0, +90, 180 ° can be deduced from the 
phase-vector diagram (§ 4a). The results of this semi- 
quantitative discussion will be confirmed by q/-scan 
profiles calculated on the basis of the exact dynamical 
theory for a three-beam case (§ 4b). 

For all the profiles the rotation sense of the ~ scan 
is chosen so that the third r.I.p. G crosses the Ewald 
sphere from inside ( ~ < 0) to outside [ ~ > 0) (in-out 
case). For an out-in case the profiles must be read 
from right to left (Chang, 1982). 

( a ) Semi-quantitative discussion 

Let us begin with qbz=0 °. At the onset of the 
three-beam diffraction the interfering waves are 
essentially in phase and scanning towards the exact 
three-beam setting, the Umweg wave amplitude 
growth. So is the intensity. Close to and scanning 
through the three-beam position, the total phase 
difference is shifted from 0 to 180 ° caused by the 
resonance phase shift A ( ~ )  (cf  Fig. la) .  Then, the 
waves are out of phase [q ) (q t )=0+180  °] and the 
intensity drops below the two-beam level lt2~(h). 
When the r.l.p. G leaves the Ewald sphere the Umweg 
amplitude decreases to zero (Fig. 1 a), i.e. the intensity 
approaches again the two-beam level. This typical 
asymmetry of the ~-scan profile can be immediately 
seen from the corresponding phase-vector diagram 
(Fig. 3a). Equation (16) leads to the same type of 
asymmetry taking into account the resonance phase 
shift of 180 ° . For simplicity one may neglect the 
second term of (16); it is at least one order of magni- 
tude smaller in the range considered (1~1> 2"). 

This type of asymmetry is reversed for a triplet 
phase ~z = 180 °, because scanning through the three- 
beam position (in-out) the interfering waves are at 
first out of phase [ 4)(~)  = 180 + 0 °] and then in phase 
[q~(~)=  180+180°]. The phase-vector diagram for 
this case is shown in Fig. 3(c). 

For triplet phases of ~z near +90 ° the ~-scan 
profiles are nearly symmetrical, but there are sig- 
nificant differences. By means of the phase-vector 
diagrams Figs. 3(b) and (d) it is shown that for ~z 
near +90 ° there is a nearly symmetrical decrease, 
whereas for ~z near -90  ° an increase of the two-beam 
intensity results. This behaviour can also be deduced 
from (16). For ~_~ = +90 ° the interference term (cos 
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term) is always negative [90 < qb(~) < 270 °] and for 
q~z = - 9 0  ° it is always positive [ - 9 0 <  @ ( ~ ) < 9 0 ° ] .  

( b ) Calculated ~-scan profiles 

To confirm the results of the previous section we 
calculated ~-scan  profiles on the basis of the exact 
dynamical theory for the three-beam case. The details 
of the calculations were reported recently (Hiimmer 
& Billy, 1982). 

As a non-centrosymmetric model structure we 
chose L-asparagine monohydrate (C4H10N204), space 
group P2~2~2~ and lattice parameters a = 5.6, b = 9.8, 
c = 11.8/~; Z = 4. The structure factors were calcu- 
lated on the basis of the enantiomorphic form of the 
published structure (Kartha & De Vries, 1961) (i.e. 
all the published atomic coordinates were taken with 
reversed sign). The structure factor moduli are given 

= 0 ° 2i21211 : {Z 

0.99 t 
-,'oo-2oo o 200 40° 

(a) 

212ii53 : ~?Z =9/*° 

0.99 
-3;o-,;o ; 40 3~o 

(b) 

2i21212 : {Z:180° 
1'011 

0.99-1 . . . . .  
-400 -200 0 200 400 

(c) 
2]212 3] : ~Z=-94" 

• ' , , , , , 

-200 - 1 0 0  0 1 0 0  200 

Lp (seconds of arc) 
(d) 

Fig. 3. Calculated ~F-scan profiles for L-asparagine for four 
different triplet phases q~ and the corresponding phase-vector 
The integrated intensity I(2~2) is normalized with respect to the 
two-beam level r(2_) The two sets of indices indicate the Bragg ~t 2 1 2 .  

reflections due to h and g, which are in their diffraction positions 
at the three-beam setting. The triplet phase calculated from the 
known structure is given by ~ = ¢(-h)+ ¢(g)+ ¢(h-g). 

in Table 1. The triplet phases calculated from the 
known structure are indicated in Figs. 3 and 4. 

For the calculations of the ~-scan profiles the 
following parameters were used: wavelength: 
Cu Ket, A = 1.54/~; wavelength spread: AA/A = 
3 x 10 -4, divergence of the primary beam: 2 min of 
arc; gt-scan sense: in-out;  geometrical alignment: 
Bragg-Bragg* or Bragg-Laue.* The aF-scan rocking 
curves were calculated for the reflection h = 212 in- 
volved in various triplets with different triplet phases. 

The results are shown in Fig. 3. The calculated 
profiles confirm the typical features of  the ~-scan 
profiles for different triplet phases, which can be 
immediately deduced from the corresponding phase- 
vector diagram. 

5. Determination of enantiomorphs 

For a non-centrosymmetric space group there are two 
enantiomorphic forms: the structure (S) with atomic 
coordinates rj and the inverse ( I )  with atomic coor- 
dinates r~ = -r j .  If  the same origin is chosen for both 
forms the structure factors differ in the sign of their 
imaginary parts and their phases are related by 
~s(h)  = - ~  (h). Therefore, the triplet phase sums of 
S and I have opposite signs independent of  the choice 
of the origin: qo~(S) = - @~(I) (Rogers, 1980). Hence, 
best selectors for S and ! are triplet phases with 
~z  = +90 °. Since both cases can be distinguished by 
means of the ~-scan  profiles the absolute configur- 
ation can be fixed with only one measurement. 

6. Discussion 

As discussed above there are four typical gt-scan 
profiles for the triplet phases @:r = 0, +90, 180 °. It 
should therefore be possible to determine experi- 
mentally at least the quadrant  of the triplet phase 
involved in the three-beam diffraction by means of 
the measured profile, and at the same time the 

* This notation is defined in Hiimmer & Billy (1982). 

o 

H 

o 
o 

I-- i  

E 

1.3 ., ..... ~ = 64° 
",, " z ¢~r~ 

1.21.1 ~ z  =-62* 

-400 -200 0 200 400 ( re 
(seconds of orc) ,. D ~ ) ~  

Fig. 4. Calculated ~-scan profiles for L-asparagine and the corre- 
sponding phase-vector diagrams for two different triplets in the 
case of a weak direct wave and a strong Umweg wave. 200/133, 
~z = -62°: full line; 200/ii3, ~ = 64°: dashed line; [F(200)I = 
16; IF(ll3)[ = 81. 
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Table 1. Triplet phases and moduli of  the structure 
factors for the calculated V-scan profiles of  Fig. 3 

• z h g IF(g)l IF(h-g)[ 
0 ° 212 211 40 24 

94 ° 212 i33 33 24 
180 ° 2i2 212 44 33 
266 ° 2i2 23i 24 24 

IV(-h)l--IF(~l~)l-- 44; IF(O)l = 321 

absolute configuration can be fixed. But there are 
some basic requirements which have to be met in 
order to measure these typical V-scan profiles in the 
experiment. 

First of all, the maximum amplitudes of the inter- 
fering waves should be approximately of the same 
magnitude. Apart from the resonance terms R, the 
amplitudes are governed by the product of the struc- 
ture factors F and the geometrical coupling factors 
a [cf. (10)]. In our theoretical and experimental 
results, the products a ~ F ( m - n )  should not differ 
from one another by a factor of two. This also implies 

h that the a ' s  must not equal zero. For instance, if O~g 

is approximately zero, then a strong wave may be 
propagated in the K (g) direction but it cannot interact 
with the direct wave [cf. (10)]. That means that a 
second channel K(g) is opened where energy can 
flow out and the two-beam intensity is always 
decreased in such a case. If the amplitude of the direct 
wave is too small then there will always result an 
increase of the two-beam intensity because of the 
relatively high amplitude of the Umweg wave. 
[Umweg-Anregung (Renninger, 1937)]. In such a 
case, shown in Fig. 4, there is no essential difference 
between the V-scan profiles of different triplet 
phases, i.e. the phase information is lost. These facts 
can be seen from the phase-vector diagram in Fig. 4. 
On the other hand, if a strong direct wave interacts 
with a weak Urnweg wave the dominant process will 
be scattering into the K(g) direction via the r.l.v. 
g - h .  Then the amplitude of the direct wave is dimin- 
ished and a decrease in the two-beam intensity results. 
Calculations (Mayer, 1928) showed that this decrease 
is largely independent of the triplet phase (Auf- 
hellung). 

Secondly, the divergence and the spectral width of 
the primary beam must be small enough, since the 
ideal dynamical angular range of the three-beam 
interaction is [~1 -~ 10". As has already been discussed 
(Htimmer & Billy, 1982), the greater the divergence, 
the smaller is the change of the two-beam intensity 
level. 

Thirdly, we have pointed out (Hiimmer & Billy, 
1982) that the absorption effects are not fundamental 
in explaining the asymmetry of the V-scan profiles 
(Post, 1983), since for/Zot < 0.5 there is no significant 
difference with respect to the asymmetry for both 
diffraction geometries, transmission (Laue-Laue and 
Laue-Bragg) and reflection (Bragg-Laue and Bragg- 

Bragg) (/z0: linear absorption coefficient; t: crystal 
thickness). However, for /z0t>0.5, anomalous 
absorption effects may drastically change the typical 
profiles in the transmission case, while there is no 
essential influence on the reflection case. This means 
that the profiles become independent of the crystal 
shape for/z0t < 0.5, since for arbitrarily shaped crys- 
tals there is always a mixture of both diffraction 
geometries. 

In conclusion, we are aware of the fact that the 
outlined simple phase-vector diagram for the interfer- 
ence of the direct and the Umweg wave cannot explain 
all the details of the V-scan profiles. It is not valid 
very close to the three-beam position because the 
denominator N of (11) is no longer a constant. In 
this range R (g) may rise to 106, and all the resonance 
terms R(n)  depend on the intersection of the disper- 
sion surfaces, which depends on the diffraction 
geometry. These effects are all included in the calcula- 
tions based on the dynamical theory. They may play 
an important role in discussing the details of the 
qt-scan profiles in the case of a very weak direct 
reflection, for instance Ge(222), as was done by 
Juretschke (1984). We know from our theoretical 
calculations that there is a tendency to increase the 
two-beam intensity in the Bragg case, whereas in the 
Laue case an overall decrease of the intensity is 
observed. This can also be seen by comparing Figs. 
3(b) and (d). Since there is a mixture of both 
geometries for an arbitrarily shaped crystal, these 
opposite tendencies may compensate each other in 
the real experiment. 

However, by means of the phase-vector diagram 
the general features of the V-scan profiles can be 
deduced even in the case of non-centrosymmetric 
structures and it throws light upon the physics of the 
three-beam interference. 

Experimental results concerning the determination 
of triplet phases of asparagine monohydrate will be 
reported in a second paper. We have already reported 
the main results at ECM8 in Liege (Hiimmer & Billy, 
1983) and the XIIIth Congress of the IUCr in 
Hamburg (Hiimmer & Billy, 1984; Billy, Burzlaff & 
HiJmmer, 1984) 

We gratefully acknowledge helpful discussions 
with Professor Dr H. Burzlaff. 
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Abstract 

Three new 3D (3, 4)-connected nets are described belonging 
to the special family of nets in which each 3-connected 
point is connected to three 4-connected points and each 
4-connected point is connected to four 3-connected points. 

In earlier accounts of three-dimensional nets (Wells, 1977, 
1979) it was noted that a special family of 3D (3, 4)- 
connected nets comprises those in which every 3-connected 
point is connected to three 4-connected points and every 
4-connected point to four 3-connected points. These nets 
represent actual or possible structures of compounds A3X a 
in which A and X are the 4- and 3-connected atoms respec- 
tively. Since the unit cell in an ordered structure must 
contain one or more A3X4 the total number Z '  of 3- and 
4-connected atoms must be a multiple of 7, that is, Z '  = 7Z 
for a unit cell containing Z(A3X4). The only nets of the 
Z ' = 7 m  family that were described previously were one 
cubic net with Z ' = 7  and two nets with Z ' =  14. A by- 
product of a survey of tetrahedral structures (Wells, in 
preparation) was the recognition of three more nets of the 
Z '  = 7m family, all with Z '  = 14. These are the nets 2, 3 and 
4 listed below. The structures based on net 3 have been 
known for some time, but were not described as examples 
of a net of this type. 

Accordingly we may now list six nets of the Z ' = 7 m  
family. The first five can be built with regular tetrahedral 
coordination of the 4-connected A atoms and are illustrated 
as structures built from regular tetrahedra in the survey 
referred to above. In the most symmetrical configuration 
of the sixth net there is square coplanar coordination of 
the 4-connected points. The coordination of the 3- 
connected points is exactly or approximately trigonal co- 
planar in nets 6 and 5 respectively but pyramidal in nets 
1-4. The two cubic nets 1 and 6 are the only two of this 

family in which all 3-connected points are symmetrically 
equivalent and all 4-connected points are symmetrically 
equivalent. The detailed descriptions of the most sym- 
metrical configurations of the nets are as follows: 

1. (63)4(6284)3 Space group PT~3m (No. 215) Z '=  7 

v3 4(e) (xxx) x = ~  

/)4 3(d) (½00) 

2. (63)6(83)2(6383)6--a Space group P63mc (No. 186) 
Z ' =  14 

f2(b)  (]]z)  z=½ 

/)3116(c) (x-yz) x = ~  z = 0  

/ )4  6(c) (x:~z) x=~ z = ]  

c : a = ~ / x / 3  

3. (63)8(6383)2(6284)4 Space group I42m (No. 121) Z ' =  14 

v3 8(i) (xxz) x=¼ z=]  

v412(a) (000) 

t4(d) (~¼) 
c : a = 2  

4. (63)2(6.82)2(63)4(6383)2(6482)4 Space group Pmn2x 
(No. 31) Z ' =  14 

__ 15 [ '2(a)  (0yz) y = ]  z - r g  
/ 

v3~2(a) (0yz) y = 2  z = 7  
/ 

14(b) (xyz) x=¼ y=~ z = 7  

/)4~2(a) (Oyz) y=¼ =~ z 
[4(b)  (xyz) x y = ~  

a : b : c = 2/~/3:1 : 2.f2/3 


